Nonlinear Optics (WiSe 2017/18)
Lecture 25: January 25, 2018

Chapter 13: Strong-field physics in solids
13.3 Semiconductor Bloch equations
(13.4 Carrier-wave Rabi flopping)
(13.5 THG in disguise of SHG)
13.6 High-harmonic generation from solids

13.6.1 Ab-initio simulations based on TDDFT
13.7 High-order sideband generation

:|~ in Lecture 19 already

13.8 Dynamical Franz-Keldysh effect

(13.9 Other strong-field phenomena in solids)



Semiconductor Bloch equations
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interband and intraband dynamics are coupled




The dependence of the internal structure of a particle on the dynamical parameter can
give rise to anomalous transport properties — in particular, the Berry-phase effect’,
The Berry phase can be characterized by the Berry curvature, {2, which behaves like an
effective magnetic field in momentum space. In the context of Bloch electrons — that
is, electrons that occupy a Bloch band of a crystalline solid — (2 originates from the
dependence of the periodic part of the Bloch function, u_,, on the wave vector k.
Consider a wave packet of a Bloch electron moving adiabatically in a non-degenerate
energy band with band index n. In many situations, the wave packet has a real-space
extension that is much larger than the lattice constant but much smaller than the
length scale of the external perturbation; thus, the wave vector and the position of the
wave packet can be considered simultaneously. The electron wave packet can then be
described by the semiclassical transport equations of motion***®:

L 1 0E,,
h ok

~kxQ,, hk=-eE-eixB

where E  and () , are the energy dispersion and Berry curvature of the nth band, kand r
are the crystal momentum and position of the electron wave packet, and E and B are the
external electric and magnetic field, respectively. The dot represents the first derivative
with respect to time. The term k x (2, gives rise to an anomalous velocity perpendicular
to E (that is, the Hall effect).

J. R. Schaibley et al., Nature Reviews Materials 1, 16055 (2016)
D. Xiao, M.-C. Chang, and Q. Niu, Rev. Mod. Phys. 82, 1959 (2010)




G

E A

13.6 HHG from solids
Bloch oscillations in bulk solids
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Bloch oscillations in bulk solids
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/ Herbert Kroemer’s Nobel Prize autobiography (2000):
& . ... it became obvious that the huge fields required for
_ ‘ Bloch oscillations in a bulk semiconductor could never be reached."”




Bloch oscillations in semiconductor superlattices

Wik oo i I

from G. H. Dohler, Physica Scripta 24, 430 (1981)

Bloch energy B e Bloch period Ip ToE

L. Esaki et al., IBM J. Res. Dev. 14, 61 (1970):
"If the electron scattering time is sufficiently long, electrons
will undergo rf oscillation due to the reflection at the minizone

boundaries, the so-called “Bloch oscillation.” "




Wannier-Stark ladders in solids

~—— energy band

Wannier-Stark ladder

m=0, £1, £2. ...

electron wave packet is superposition of Wannier-Stark states,
quantum beating between these states are Bloch oscillations

G. H. Wannier, “Wave Functions and Effective Hamiltonian for
Bloch electrons in an Electric Field®, Phys. Rev. 117, 432 (1960)




Equivalence of Bloch-oscillation and Wannier-Stark pictures

Hamiltonian of the system

_(—iTLVr — CA(r, t))2
2mg

+ ep(r, 1) + V) | on(r) = engn(r)

t
vector-potential gauge: A(r,t) = —cf E(t)dt' o(r,t) =0

Bloch-oscillation picture o

scalar-potential gauge: A(r,t) =0, o(r,t) = —E() -r
Wannier-Stark picture

total equivalence of the Bloch-oscillation and Wannier-Stark pictures,
i.e., the often so-called “semiclassical Bloch picture” is on the contrary a
rigorous quantum-mechanical result (Fausto Rossi, 1997)




mid-IR-driven HHG from bulk ZnO
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Nature Physics 7, 138 (2011);
PRL 107, 167407 (2011)
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500-um-thin ZnO crystal

9-cycle-long MIR pulses
(~100-fs 3.25-ym 0.38-eV
pulses with up to 2.63 pJ
energy, yielding a focused
field strength of 6 V/nm)

Bloch HHG up to 25th
order extending to >9.5 eV

J. P. Marangos, Nature Physics 7, 97
(2011)]: "An important question not yet
addressed is whether the harmonic
emission retains a subfemtosecond
character; that is, is it confined only to
certain moments within the optical cycle?
The observed bandwidth of the emission
(~9 eV) is sufficient to support
subfemtosecond pulses."




Bloch oscillation of an electron

d
“acceleration theorem“: #h#  k eE

dt

time-dependent field: a%k(t) = -0 (1)
instantaneous Bloch energy: # () aeE(t)

solution:  k(t)=k, +eA(t)/h with A{t)=—[ dt'E(t)

k-space dynamics directly reproduces A(t), however, folded
into the first Brillouin zone via Bragg reflections at the
Brillouin zone boundaries




HHG from Bloch oscillating electron wave packets

h2

2
m_a

tight-binding band structure: % _(k) 11 —Cos(ka)]

Boltzmann equation (scattering ignored): %f(k,t) = —%E(t)%f(k,t)

group velocity: Vv (k)= dik @, (k)

resulting current: j(t) ce J.Bzdk v (K)f(k,t)

source term j(t)/ ot — Bloch-HHG spectrum Irad(a))oc|a)j(co)|2

M. W. Feise et al., Appl. Phys. Lett. 75, 3536 (1999)
M. Wegener, Extreme Nonlinear Optics (Springer, Berlin, 2005)
O. D. Micke, PRB 84, 081202(R) (2011)




Bloch oscillating electron wave packet

field 1: (17 fs, 2.3 uym),

field 2: (r, = 0.5, 25 fs, 3.6 ym)
E,= 6.2 V/nm

(potential drop of 3V over a)

electric field

.002
Lo0iZ k(t)=k,+eA(t)/ T

near t=0fs, current changes
from -1 to +1 within 640 as

curren
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Hime =) 0. D. Miicke, PRB 84, 081202(R) (2011)
S. Ghimire et al., Nature Physics 7, 138 (2011)
O. D. Mucke et al., Opt. Lett. 27, 2127 (2002)




Time-frequency analysis using Gabor transform
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lower harmonic orders: emitted at several instants during one optical cycle

highest harmonic orders: emitted only during extrema of electric field

Important: It is obviously NOT feasible to compress the total ~9 eV bandwidth
to an isolated attosecond pulse because of the complicated chirp




Cutoff filtering of Bloch-HHG
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Influence of band structure
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broadness of HHG emission is mainly determined by the maximum steepness of

the band dispersion w,(k) since for a steeper dispersion the intraband acceleration
leads to a faster variation of the electron energy via k(t)




Waveform-driven HHG from solids: intraband dynamics
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T. T. Luu et al., Nature 521, 498 (2015)
M. Garg et al., Nature 538, 359 (2016)

intraband dynamics (Bloch oscillations)




Waveform-driven HHG from solids: intraband dynamics
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THz-driven HHG from solids:
coupled intra-/interband dynamics

Intensity (norm.)

Bandgap

104
0 100 200 300 400 500 600
Frequency (THz)

b 50 g
125 &
> 1:04 l: &
2 E
£ L25%
= =
M. Hohenleutner et al., 800 S0g
£ o

Nature 523, 572 (2015) 5
= 100 2
c Experiment /IS é
107 =
10{%

Frequency (THz)

B~
[
o

'
‘l
1
'
'
1
'
1
'
0

50 100 150
Delay time (fs)

0.
Nature Phot. 8, 119 (2014)

Schubert ef al.,

50
e
25
EW .04 Lo
=
2 L-25
B
=
- 0.5 L 50
[}]
N
©
&
2 0.0
- 10°
d Reconstruction 108
107
108

Frequency (THz)

I
a
o

'
'
'
'
1
'
1
1
1
1
0

50 100 150
Delay time (fs)

-100 -50

(i-wo AN) M3 ‘pay owpos|g

('n"e) Aususyu)



13.6.1 Ab-initio simulations based on
time-dependent density-functional theory (TDDFT)
no a priori model assumptions, no strong approximations
full electronic structure (valence and conduction bands), real crystal structure
N. Tancogne-Dejean et al., Phys. Rev. Lett 118, 087403 (2017)

2
HHG(w) o< |FT /d?‘rn.(r.t)v-yg(rj + N.E(w)| . (13.56)
0

like HHG spectrum. The more interesting and relevant term for HHG 1s the
first one in Eq. (13.56). It shows that higher harmonics are generated by two
competing terms, the spatial variation of the total electronic density (n(r.#))
and the gradient of the electron-nucler potential (Vuvg(r)), the latter being time
imndependent, as 1onic motion 1s neglected here. In gases, the gradient of the
clectron-nuclei potential is important, but the electronic density is low. In
the case of solids, the electronic density 1s higher. but the potential 1s rather
homogeneous, resulting in a smaller gradient of the potential than in the atomic

case. In fact, mn the limit of a homogeneous electron gas, the gradient becomes
zero, and no harmonics are generated, irrespective of the value of the electronic
density. In this case the bands are parabolic, thus we recover the known result
that parabolic bands do not yield non-perturbative harmonics [69].
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Figure 13.24: HHG spectra from bulk silicon, for polarization along I' X', computed
within the LDA (LDA; black line) and within the LDA, but freezing the Coulomb
and exchange-correlation terms to their ground-state value (LDA-FreezeHXC: red
line). [83]
In silicon, electrons evolve mainly as independent particles in the ground-
state potential — single-active electron (SAE) approximation good

might retrieve ground-state information (band structure) from HHG spectra
N. Tancogne-Dejean et al., Phys. Rev. Lett 118, 087403 (2017)
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anisotrope HHG emission
even for cubic crystal

joint density of state (JDOS)

low JDOS:
interband transitions suppressed
clean harmonics

N. Tancogne-Dejean et al.,
Phys. Rev. Lett 118, 087403 (2017)




HHG cutoff independent of driver wavelength
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N. Tancogne-Dejean et al., Phys. Rev. Lett 118, 087403 (2017)



Summary of findings of
N. Tancogne-Dejean et al., Phys. Rev. Lett 118, 087403 (2017)

To briefly summarize the findings by Tancogne-Dejean et al. [83]: it was
shown analytically that HHG 1n solids 1s enhanced by the inhomogeneity of the

electron-nuclel potential. and that the vield is increased for heavier atoms in
the solid. The ab-initio TDDF'T simulations demonstrated that HHG 1 bulk
crystals 1s anisotropic, even in cubic materials. The simulations revealed that
1t 1s possible to suppress interband transitions in favor of HHG arising from
mmtraband dynamics i solids. and most mmportantly to predict the optimal

laser polarization, based on the sole knowledge of the crystal’s band structure

and 1ts JDOS. Fially, the simulations confirmed without making any model
assumptions that the cutoff of the HHG 1n solids 1s waveleneth-independent.
Further mvestigations should address extrinsic effects such as the electron-
phonon coupling, propagation and surface effects. These findings and ab-initio
TDDEFT simulations can guide the search of better materials for solid-state
hich-harmonic sources and tailored HHG 1 solids.

dependence on driver polarization, circularly polarized HHG:
N. Tancogne-Dejean et al., Nature Commun. 8, 745 (2017)




13.7 High-order sideband generation
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13.8 Dynamical Franz-Keldysh effect

static Franz-Keldysh effect:
photon-assisted tunneling of electrons from valence to conduction band

dynamical Franz-Keldysh effect:
characterized by U, ~ hw, , can be thought of as the point, where the
tunneling time is comparable to the light period of the excitation field




13.8 Dynamical Franz-Keldysh effect
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Figure 13.23: Dynamical Franz-Keldysh effect: (Left) Interband absorption in a
direct-gap semiconductor near the band gap F, without (solid line) and with (dashed
line) a strong driving field. (Right) Experimental data in GaAs and fit by Yacoby’s
[24] theory. [T7]

A. Srivastava et al., Phys. Rev. Lett. 93, 157401 (2004)

(i) induced below-band-gap absorption (region I),

(i) blue shift (equal to U,) of the band edge causing
induced transparency (region II),

(iii) oscillatory behavior above the band gap (region llI)




attosecond dynamical Franz-Keldysh effect in diamond

attosecond transient XUV absorption on polycrystalline diamond
5-fs IR pump, ~6.5 x 1012 W/cm?
isolated 255-as XUV pulses (spectrum 35-50 eV)
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M. Lucchini et al., Science 353, 916 (2016)



attosecond dynamical Franz-Keldysh effect in diamond

attosecond transient XUV absorption on polycrystalline diamond
5-fs IR pump, ~6.5 x 1012 W/cm?
isolated 255-as XUV pulses (spectrum 35-50 eV)
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IR-pump-induced changes oscillate at 25

M. Lucchini et al., Science 353, 916 (2016)




