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FROG-CRAB

Frequency-Resolved Optical Gating for Complete Retrieval of Attosecond Bursts
Y. Mairesse and F. Quéré, Phys. Rev. A 71, 011401 (2005)

In [69, 70], the deep connection between RABBITT and attosecond streaking
was revealed and unified to the more general FROG-CRAB technique. Within
the framework of the strong-field approximation (SFA) |7, 3], the transition

amplitude to the final continuum state |v) of the electron with momentum v
can be expressed as [T0)]

~+o0 _ ,
a(v,At) = —i f dt ¢?Od o Exuy (t — At)elV /2t (12 99)
oo
o(t) = —/ dt'[vAL(t) + A (t)/2]. (12.23)
t

Here, Exyy(f) 1s the XUV electric field, A (#) the laser vector potential of
the dressing pulse, p(f) = p + A(?), d, the dipole matrix element from the
eround state to a continuum state |p). I, the atom’s ionization potential. o(t)
represents the quantum phase acquired by the electron in the continuum due to
1ts interaction with the laser field. The measured spectrograms are then given
by the square modulus of the transition amplitude, 1.e.. S(v, At) = |a(v. AI‘.)|2+




FROG-CRAB

Frequency-Resolved Optical Gating for Complete Retrieval of Attosecond Bursts
Y. Mairesse and F. Quéré, Phys. Rev. A 71, 011401 (2005)

As shown in [69, T0], Eq. (12.23) has an intuitive interpretation: the laser
electric field induces a phase modulation on the electron wavepacket during
1its propagation in the contimuum, after being created by the XUV field. In
RABBITT. for attosecond XUV pulse trains generated from multi-cycle laser
fields, the weak dressing field acts as a periodic phase modulator on the elec-
tron wavepacket, thus creating the sidebands that are used to retrieve the
harmonic phases. In attosecond streaking, for isolated XUV pulses generated
from few-cycle laser fields, the XUV pulse 1s significantly shorter than then the
optical period of the strong streaking laser field. thus creating the characteristic
streaking spectrograms.




FROG-CRAB

Frequency-Resolved Optical Gating for Complete Retrieval of Attosecond Bursts
Y. Mairesse and F. Quéré, Phys. Rev. A 71, 011401 (2005)

The spectrograms S(v, At) = |a(v, At)|? given by Eq. (12.23) resemble the
well-known FROG trace
Foo 2
S(w,At) = ‘f dt G(t)E(t — At)e™* (12.24)

In standard FROG. G(#) represents a pure amplitude gate. and efficient algo-
rithms (e.g., the generalized projections algorithms) can be used to retrieve
E(t) and the gate G() from the spectrogram. Inspection of Eq. (12.23) sug-
oests that in FROG-CRAB. G(#) = ¢ could be used as a pure phase gate for
the reconstruction. However, a requirement for the applicability of generalized
projections algorithms to FROG-CRADB 1s that there cannot be mseparable
terms inside the integrand of Eq. (12.23) that depend both on momentum and
time [71]. Obviously, two terms in Eq. (12.23) cause trouble: d; and o(?).

The standard remedy to fix this 1ssue 1s to make the central momentum ap-
prozimation (CMA ), by substituting p(#) with the central momentum of the




FROG-CRAB

Frequency-Resolved Optical Gating for Complete Retrieval of Attosecond Bursts
Y. Mairesse and F. Quéré, Phys. Rev. A 71, 011401 (2005)

unstreaked electrons pg (and v by vg). 'The CMA 1s good as long as the band-
width of the attosecond pulse 1s much smaller than the central energv of the
photoelectrons. Interestingly, for recent state-of-the-art experiments [19, 20].
the CMA is only barely met, the isolated 65-as pulses in [61] already vio-
late this approximation. For such ultrabroadband XUV pulses novel retrieval
algorithms, that do not employ the CMA, have been developed, e.g, _Phase
Retrieval by Omega Oscillation Filtering (PROOF) (72| and Volkov transform
generalized projections algorithm (VIGPA) [73] .

Coming back to FROG-CRAB: as can be seen by the reconstructions shown
in Figs. 12.29. 12.30, and 12.31, FROG-CRADB provides a unified framework
to characterize APTs and and [APs and even more complex fields.

PROOQOF: M. Chini et al., Opt. Express 18, 13006 (2010)
VTGPA: P.D. Keathley et al., New J. Phys. 18, 073009 (2016)
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12.3.7 Transient XUV absorption spectroscopy

changes induced by a first strong pump pulse are probed by the
transient absorption changes of an isolated attosecond XUV pulse

real-time observation of valence electron motion in Kr:
E. Goulielmakis et al., Nature 466, 739 (2010)

observation of Autler-Townes splitting and sub-cycle AC Stark shifts in He:
M. Chini et al., Sci. Rep. 3, 1105 (2013).

laser control between symmetric Lorentzian and asymmetric Fano line
shapes in He:
C. Ott at al., Science 340, 716 (2013)

observation and control of two-electron wave packets in He:
C. Ott et al., Nature 516, 374 (2014)

Show video!



12.3.8 Attosecond ion-charge-state chronoscopy

attosecond tunneling spectroscopy
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Attosecond tunneling spectroscopy
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12.3.9 Attoscience beamline at MPQ Garching
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M. Schultze et al., J. Electron Spectrosc. Relat. Phenom. 184, 68 (2011)



12.3.9 Attoscience beamline at ETH Zurich
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M. Sabbar et al., Rev. Sci. Instrum. 85, 103113 (2014)



Chapter 13: Strong-field physics in solids

strong-field (i.e., nonperturbative) phenomena in solids

many physical processes currently of interest in this research area already
known for decades, but only thanks to the advent of modern state-of-the-
art intense few-cycle pulses, in particular in mid-IR or THz, they can now
experimentally be investigated

Herbert Kroemer’s Nobel Prize autobiography (2000):
"... it became obvious that the huge fields required for
Bloch oscillations in a bulk semiconductor could never be

reached."

In addition, rapid progress in the field of quantum materials
D. N. Basov, R. D. Averitt, and D. Hsieh, Nature Materials 81, 1077 (2017)

15



13.1 examples: semiconductors GaAs and ZnO
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Figure 13.1: (a) Zinc blende structure of GaAs [6]. (b) Band structure of GaAs [T7].

[lI-V direct gap semiconductor, 1.42 eV band gap
no inversion symmetry

detailed discussion of band structure in Lecture Notes pages 308-309
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13.1 examples: semlconductors GaAs and ZnO
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Figure 13.2: (a) Wurtzite structure of ZnO, the crystallographic ¢é-axis is indicated
[9]. (b) Band structure of ZnO [10]. In this band-structure calculation, spin-orbit
interaction was not included. The inset illustrates the points and directions of high
symmetry of the Brillonin zone.

[I-V] direct gap semiconductor, 3.3 eV band gap
ZnO has a Tc-axis without inversion symmetry and it is birefringent
(electric field E ||’c and E L ¢ are inequivalent).

detailed discussion of band structure in Lecture Notes pages 309-310



Extreme nonlinear optics in solids, atoms, molecules

ponderomotive energy U o /12]/me

semiconductors electron mass m,
resonant effects (GaAs: Q/w, =1) 0.067xm,
off-resonant effects (ZnO: Q/w, =2.2) 0.24xmj,

atoms and molecules

far off-resonant effects (Neon: I/h ) m,

— required intensities 2-3 orders of magnitude larger than in
semiconductors!

strong-field excitation with UV — VIS - IR — THz driver pulses,
very different from gas case which is typically far off-resonant



13.2 Energy scales of strong-field interactions in solids
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M. Wegener, Extreme Nonlinear Optics
(Springer, Berlin, 2005)




13.2 Energy scales of strong-field interactions in solids
E A

interband transitions

conduction Rabi energy

h o, dE
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optical Bloch equations

- em e o eHem e e e e -

valence
band

O. D. Mucke et al., in Topics Appl. Phys. 95, 379
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(Springer, Berlin, 2005)




13.2 Energy scales of strong-field interactions in solids
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interband transitions
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ponderomotive energy
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(limited validity within
effective mass aproximation!)




13.2 Energy scales of strong-field interactions in solids
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32nm 22nm 14nm 10nm /nm 5nm
2009 2011 2013 2015+
Manufacturing Development Research
Future Options

Photonics

(2

Future options subject to change

Source: Intel

ever decreasing gate length (14nm in 2013, potentially 5nm in 2015+)
— higher potential drops in semiconductor structures
— extremely strong electric fields (~1 V/nm)

— energy scales of strong-field interactions (ponderomotive, Rabi, Bloch energies)
become comparable to characteristic energies of semiconductor (~1 eV)
extreme light-matter interactions (underlying physics, feasibility of scaling...)




13.3 Semiconductor Bloch equations

interacting electrons and holes within a strongly excited solid have
to be treated as a system far from equilibrium

semiconductor Bloch equations treat the Coulomb interaction consistently
on a Hartree-Fock level, and include many-body and phase space effects

such as, e.g., band-gap renormalization, Pauli blocking, and screening

Hamiltonian (in second quantization, no intraband driving)

H=7) Eek)eheg+) Bok)ecor
: :




The equation of motion of the optical transition amplhitudes
Pee(k) = (e cz) (13.22)

(depending on time ¢ as well as parametrically on the spatial coordinate 7)
and those of the occupation numbers in the conduction band

fe(k) = (¢ c.z) (13.23)

and 1 the valence band ~
folk) = (e e.z) (13.24)

are easily calculated from the Heisenberg equation of motion for an arbitrary
operator @ according to

13
il o=IHO
ihoe O = [H, 0

while employing the usual fermionic anticommutation relations, 1.e.,

(13.25)

b

o Cplv = O [CvE*CIEr]+ = Oz (13.26)

and that all other anticommutators are zero. The resulting equations of
motions nclude couplings to higher-order correlations. With the help of a
quantum-mechanical projection-operator technique it was shown in Ref. [38],
that (without approximation) the density matrix can be projected into a ”co-
herent contribution” and a "scattering contribution”, respectively, and that
the time evolution of an arbitrary operator O 1s governed by

(13.27)




After some lengthy but straightforward operator algebra this leads to the
semiconductor Bloch_equations for the transition amplitude

(550" [£0) = £ (D] ) D+ (o)) =000 [4F) — 2B
o (13.28)

for the distribution function of the conduction band

0, = a ., = -
giheB)+ (G0 = -2m( G E0B). 329

and a corresponding equation for the distribution function of the valence band.
The terms with subscript "scat” describe dephasing and relaxation originat-
g from many-body mnteractions beyond the Hartree-Fock level. As we will
see later, on a time scale close to an optical cycle, these terms can become
appreciable under extreme excitation conditions.




Within the framework of the semiconductor Bloch equations, the Coulomb
interaction leads to a renormalization® of the energies according to

Ee(k) = Ee(k) =) v(k — ) fo(K) (13.30)

(13.31)

as well as to a renormalized Rabi energy

hOR(7, K, t) = des (K)E(7, 8) + ) 0 — F)pocl(¥). (13.32)
e

Thus, the carriers do not react to the applied laser field E(r,t) alone, but to
the applied laser field plus the "internal” field which is the sum over interband
transition amplitudes p,. times the Coulomb interaction v. Furthermore, the
renormalization terms lead to a coupling of different k states.

The optical polarization, which enters the Maxwell equations, 1s given by

Zdw (pv.: L]—|—cc) + P(7.1), (13.33)

Sometimes, a background polarization B, (7. t) = oy (7)E(7. 1) = eg(ep(7) —
1)E(7,t) 1s employed, which approximately accounts for all "very” high-energy
optical transitions not explicitly accounted for in the underlying Hamiltonian.
[t can be expressed in terms of the background dielectric constant (7).




Now, including additional terms in the Hamiltonian (13.21), that also take

mmto account intraband driving

Hipea = ieE(F, ) Z o Vicq + Ve + b (13.35)

[but ignoring electron-phonon coupling in this section, since on time scale of
the light period (i.e., the relevant scale we are interested in here in this section)
electron-phonon coupling is not expected to be important (as typical phonon

periods are on the order of ~100 fs)], one can derive the semiconductor Bloch

equations for the coupled interband and intraband dynamics [42, 43] given by

O o g # = 0
(at—l—lh [EC(L)—E, me (k) + (apm( ))M

= O (7 K, 1) | £o(R) = fe(R)| + eh B(7 1) Vipe(F)

(13.36)

o)+ (5B = =2 (R0 ) + e E GOV L),
- (13.37)




plus again a corresponding equation for the distribution function of the valence
band. We immediately 1dentify the terms related to interband transitions, QRT
and to intraband transitions, £V Beside the optical polarization (13.33),
one has an additional source term in Maxwell's equations given by the induced
intraband current

J(7t) =3 (veo () fel) + vg () £u(R) ) | (13.38)

-

k

where *Er;g(f?) = V-E;(k)/h denotes the group velocities of the valence and
conduction bands (i = v,c), respectively. From the Maxwell's equation, it
follows that the radiated spectrum is given by

Loa(w)  |w?P(w) + iwd(w)|? ‘ (13.39)

It 1s immediately clear from the semiconductor Bloch equations (13.37)-(13.37)
combined with Eq. (13.39), within this theoretical framework interband and
intraband transitions are inherently coupled in a nontrivial way, which gener-
ally leads to complex coupled dynamics for strong excitations, i particular for
the case of high-harmonic generation from solids (see Section 13.6). Thus, it
1s cruclal to realize, that in the general strong-field iteraction case, 1t 1s NOT
possible to experimentally 1solate erther interband or intraband dynamics and
study them n an independent, decoupled way.




The dependence of the internal structure of a particle on the dynamical parameter can
give rise to anomalous transport properties — in particular, the Berry-phase effect’,
The Berry phase can be characterized by the Berry curvature, {2, which behaves like an
effective magnetic field in momentum space. In the context of Bloch electrons — that
is, electrons that occupy a Bloch band of a crystalline solid — (2 originates from the
dependence of the periodic part of the Bloch function, u_,, on the wave vector k.
Consider a wave packet of a Bloch electron moving adiabatically in a non-degenerate
energy band with band index n. In many situations, the wave packet has a real-space
extension that is much larger than the lattice constant but much smaller than the
length scale of the external perturbation; thus, the wave vector and the position of the
wave packet can be considered simultaneously. The electron wave packet can then be
described by the semiclassical transport equations of motion***®:

L 1 0E,,
h ok

~kxQ,, hk=-eE-eixB

where E  and () , are the energy dispersion and Berry curvature of the nth band, kand r
are the crystal momentum and position of the electron wave packet, and E and B are the
external electric and magnetic field, respectively. The dot represents the first derivative
with respect to time. The term k x (2, gives rise to an anomalous velocity perpendicular
to E (that is, the Hall effect).

J. R. Schaibley et al., Nature Reviews Materials 1, 16055 (2016)
D. Xiao, M.-C. Chang, and Q. Niu, Rev. Mod. Phys. 82, 1959 (2010)
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13.6 HHG from solids
Bloch oscillations in bulk solids
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Bloch oscillations in bulk solids
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/ Herbert Kroemer’s Nobel Prize autobiography (2000):
8&_ . ... itbecame obvious that the huge fields required for
_ ‘ Bloch oscillations in a bulk semiconductor could never be reached."




Bloch oscillations in semiconductor superlattices

Wik oo i I

from G. H. Dohler, Physica Scripta 24, 430 (1981)

Bloch energy B e Bloch period Ip ToE

L. Esaki et al., IBM J. Res. Dev. 14, 61 (1970):
"If the electron scattering time is sufficiently long, electrons
will undergo rf oscillation due to the reflection at the minizone

boundaries, the so-called “Bloch oscillation.” "




Wannier-Stark ladders in solids

~—— energy band

Wannier-Stark ladder

m=0, £1, £2. ...

electron wave packet is superposition of Wannier-Stark states,
quantum beating between these states are Bloch oscillations

G. H. Wannier, “Wave Functions and Effective Hamiltonian for
Bloch electrons in an Electric Field®, Phys. Rev. 117, 432 (1960)




Equivalence of Bloch-oscillation and Wannier-Stark pictures

Hamiltonian of the system

_(—iTLVr — CA(r, t))2
2mg

+ ep(r, 1) + V) | on(r) = engn(r)

t
vector-potential gauge: A(r,t) = —cf E(t)dt' o(r,t) =0

t
Bloch-oscillation picture 0

scalar-potential gauge: A(r,t) =0, o(r,t) = —E() -r
Wannier-Stark picture

total equivalence of the Bloch-oscillation and Wannier-Stark pictures,
i.e., the often so-called “semiclassical Bloch picture” is on the contrary a
rigorous quantum-mechanical result (Fausto Rossi, 1997)




mid-IR-driven HHG from bulk ZnO
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Nature Physics 7, 138 (2011);
PRL 107, 167407 (2011)
PRA 107, 167407 (2012)

500-um-thin ZnO crystal

9-cycle-long MIR pulses
(~100-fs 3.25-uym 0.38-eV
pulses with up to 2.63 pJ
energy, yielding a focused
field strength of 6 V/nm)

Bloch HHG up to 25th
order extending to >9.5 eV

J. P. Marangos, Nature Physics 7, 97
(2011)]: "An important question not yet
addressed is whether the harmonic
emission retains a subfemtosecond
character; that is, is it confined only to
certain moments within the optical cycle?
The observed bandwidth of the emission
(~9 eV) is sufficient to support
subfemtosecond pulses."




