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Chapter 10: Interactions of light and matter

10.1 Two-level systems

1D model for E, V(x) (7, 1) = cgt) by () + ce(t) 1e(7)
two-level system

o Hy ve(7) = Eete(7)
—L / E. H 4 1,y(7) Eg ty(T)

-d/2 P d/2 X

time evolution from Schrodinger equation
jﬁ,a—i@(_ﬁf) = H, U (7, 1)
Jh{cg(f} ﬁf"g(_ﬂ + Ce(t) V(7)) = (Eg Cg{t) L'g(i’_j + E. ce(t) ve(T))
by multiplication of this equation from the left with the complex conjugate
ground-state or excited-state wavefunctions, integration over r, and using

the orthogonality relations for the energy eigenstates, we obtain two
separate equations for the time dependence of the coefficients



e = —]jw.C., withw, = FE, /h,

Cg = —Jjwycy, with w, = E, /h.
This procedure is equivalent to projecting the Schrodinger equation onto

the energy eigenstates.

time-dependent solution of the Schrodinger equation of the free atom
III(;_' f) - L?Q(D}E_juﬂr E“g(_'ﬂ + CE{D)E_er'r Le("—]

How does the atomic dynamics change in the presence of an external
electromagnetic (EM) field and environmental perturbations?



10.2 Atom-field interaction within the dipole
approximation

=

induced dipole moment = —ef.

Schrodinger equation for an atom in EM field Hup =Hy —d- E(Fa,t)

new equations of motion contain matrix elements

of dipole moment of atom symmetric/

antisymmetric
atomic
wavefunctions

—

V) () d7 = — [0z 7 (7).

My = [;; (7) d ve(7) dF = M,

[ 5 d vl = e [ 3




new equations of motion for probability amplitudes
1 - .
b = ey +icer ( / 027 d () df') (). (10.18)

Separating the electric field mto 1ts polarization vector € and field strength
E(t)
E(t) = E(t) €, (10.19)

the Schrodinger equation becomes

—

M, -€

bo = —iwec +ic—LE(b) (10.20)
by = e + e “E). (10.21)

The expectation value for the dipole moment of an atom in state (10.3) can
also be expressed in terms of the dipole matrix elements

(d) = [cel* Mo + [eg Mgy + ciegMeg + chee My
= M., + cec., (10.22)

atom only has dipole moment if in superposition of energy eigenstates



monochromatic field

E(t) = % (Eyet + Bge 1) | (10.23)

where E; 1s the complex electric field amplitude. We expect strong mteraction
between the field and the atom 1if the atomic transition frequency between the
states, Weg = We — Wy, 1s close to the frequency of the driving field, 1.e., w.y, = w.
It 1s advantageous to transform to new probability amplitudes, that take some
trivial oscillations already mmto account

C, = c (T (10.24)
— () F
Cg = ¢\ 77, (10.25)
which leads to the new equations of motion

: [ (W +wy +w . j(Leteatey) _-"L-_'feg € = j((Cetwatey)
Ce — ] 9 — JWe Ceej . +.]Cg A E(t) e - ;
: _. We + Wy — W . | '(*”'C"‘*"'g—wt) . ﬂ_j;g € = -(wc+wg—wt)
Cy = |] 5 — jwg| cg€’ 3 + jce 5 E(t) € 2 )

Introducing the detuning between the atomic transition and the electric field
frequencies

(10.26)



and the Rabi frequency

M . ¢ .
= % (Eq + Eje1) (10.27)

we obtain the following coupled-mode equations for the probability amplitudes

d 0
—C'. = —AC ——( 10.28
- Ce JAC, +i5-C, ( )
d ()
—C', = 1AC —C,. 10.29
- Ca HAC, +15 ( )

If the Rabi frequency is small compared to the optical transition || < w,, =
w, the so-called Rotating-Wave Approximation (RWA) [3] can be made, where
we only keep the slowly varying components in the mteraction, 1.e.,

O~ —9""F — const. 10.30
L




10.3 Rabi oscillations

. . dﬂ 0 2
resonant excitation e - | j c. (10.31)
detuning A=0 d- [’
g —3Cs = _| 4' c,. (10.32)

The solution to this set of equations are oscillations. If the atom 1s mmtially at
time ¢ = 0 in the ground state, i.e., Cy(0) =1 and C.(0) = 0, we arrive at

C,(t) = cos (lf;rlt) (10.33)
Q

Ce(t) = —jsin (|—2r|t) : (10.34)

Then, the probabilities for finding the atom in the ground or excited states are
()

le,(B))? = cos® (' 2""t> (10.35)

lce(t)]? = sin® (“:;rlt) : (10.36)

as 1llustrated m Fig. 10.2. For the expectation value of the dipole operator

—+

under the assumption of a real dipole matrix element iljfeg = M¢;,, we obtain

<.f) = Mo +coc. (10.37)
= —M_,sin (|| 1) sin (we,t) . (10.38)
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Figure 10.2: Evolution of occupation probabilities of ground and excited state and
the average dipole moment of a two-level atom in resonant interaction with a coher-

ent classical field.

population inversion w . _|2

w=F —FP,=

Mollow sidebands Wi = Weg €,




loss of coherence in the atomic system due to additional interactions of
the atom with its environment

dissipative processes can not easily be included in Schrodinger
equation formalism

dissipative quantum systems:
open quantum systems = quantum system coupled to bath

Here: include relaxation and dephasing phenomenologically into
equations of motion
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From the equations of motion for the coefficients of the wave function, Egs.
(10.28) and (10.29), we derive equations of motion for the complex slowly

varying dipole moment defined as
_* —jwt __
d=clcge =CC,.

By applying the product rule, we find

d d d
—d = cr)c,+C | —=C
dt— (dt ) g *‘-(dt 9)

. * -QT ® * QT‘ L
= JACIC, =030, +IACIC, + i CIC.
0,
= jﬂ\iJrj?'w

and

d d d
= (2o - (S, Ctee
di” (dt ) (dt g) g T

Q2

(10.40)

(10.41)

(10.42)

(10.43)

(10.44)

= (—jACEC: +j&C T —]AC,CT —j—rC’eC‘;) + c.c.(10.45)

2 g=e a9=q 2
= +jQd+cc

(10.46)

For the monochromatic wave of Eq. (10.23), we find for the dynamics of a
two-level system interacting with a coherent driving field with Rabi frequency

Q,

d Q,
9 iAd
TRttt

d
W= +1€0d + c.c.

(10.47)

(10.48)
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10.4 Energy and phase relaxation

difficult to completely isolate atom from its environment due to interaction with
- electric field from all the free-space modes of surrounding EM field
- phonons in solids

random interaction leads to a thermalization and decoherence of atom

Example:

To provide an example for the interaction of an atom with its environment in
thermal equilibrium, we consider the interaction of a two-level system with the
free-space EM field, that is in thermal equilibrium with temperature T

the electric field amplitude in the Bloch equations (10.47) and (10.48) is a
random quantity and represents the field of the black-body radiation
M?, - &

Qpor (t) = r Ey(t), (10.49)

E(t) 1s the random field and €, the random polarization
12



analysis yields

d 1 :
—w = ——w(t). 10.58
S ==l (1059
L2
J.-‘I_ir JF 3
| eg| 2wy, h 1 |
with T = T3 3, ('n'th.(weg) + E) . (10.52)
and np(weyg) = 1/(exp(hwey/kT) —1). (10.53)

random field fluctuations of the EM vacuum lead to an exponential decay
of population inversion

| M.

This result can easily be mterpreted: The first factor ~——— comes from the
average of the projection of the dipole matrix element onto a unit vector,

when averaged over every possible polarization direction. The second factor
4w3 h .o . .
— (nt h(Weg) + %) originates from expressing the power spectral density of the

electric field amplitudes at the transition frequency w =~ w., by the spectral
energy density of the black-body radiation. However, we did not only include

in the energy the part due to the thermal photon population of the mode, but

also its ground-state energy fiwe,/2. Thus even at temperature T — 0, TLI

stays fimite. The white noise property helps us to find an equation of motion



Similarly the analysis yields

d

dt—

“d=iAd—

27Ty~

this equation describes now the average dipole moment in an ensemble of

identical atoms

relaxation to steady-state inversion

d
—w =

dt

w — iy

T,

(10.59)

(10.60)
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comparison with phenomenological discussion of how thermal equilibrium
between thermal radiation and a two-level system is reached using

Einstein’s A and B coefficients
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g

Figure 10.3: Two-level atom with transition rates due to induced and spontaneous
emission and absorption.
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dP,  dP. 1

[(PE_PH) ”:h‘l'Pﬂ]

At dt Tsp
or rewritten as ap ap
— 9 - T P-T.P,.
dt a9
with abbreviations
1
I = —(n 1).
: ™ (ch + )
1
Fﬂ, — _nthr
Tsp

see Fig. 10.3. For the mversion, we then obtain

d d d —2

SR b ) LR |:H-'—|— 1
TS}_;. 2 | Tsp Qnth + 1

(10.62)

(10.63)

(10.64)

(10.65)

(10.66)

] . (10.67)

Note, here we used that FP.+F, = 1 and thus F, = wtl  Comparing coefficients

2
between Eqgs. (10.60) and (10.67), we find

1 2 + 1

— = T 4T,

T — +

wy = Lo — L = ! = — tanh
YT T4l 2mg 1

(10.68)

(10.69)
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For zero temperature, the decay time T} approaches the spontaneous lifetime

of the atom due to the zero-poimnt fluctuations of the electromagnetic field

2

43
Weg

L1 |My

T Tep - Irhcie

This 1s an expression for the spontaneous hifetime of an atom in terms of the
dipole matrix element and the density of modes 1n the electromagnetic field at
the transition frequency we,.

In summary, the equation for the dipole moment d and the mmversion w due
to 1ts interaction with the environment can be written as

d = G@@—wy—%)g (10.70)

w — u.‘u

w o= — (10.71)
The time constant 77 denotes the energy relaxation in the two-level system
and 75 the phase relaxation. T 1s the correlation time between amplitudes ¢,
and c;. The coherence between the excited and ground states described by the
dipole moment 1s destroyed by the interaction of the two-level system with the
environment.

T, energy relaxation time in general need to be computed from the

T, dephasing time scattering processes involved, in solids, e.g.,
electron-electron, electron-phonon scattering
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If the inversion deviates from 1ts equilibrinum value, wy, it relaxes back nto
equilibrium with a time constant T;. Eq. (10.69) shows that for all temper-
atures 7' > 0 the mversion 1s negative, 1.e., the population of the lower level
1s higher than the upper level. Thus with incoherent thermal light. mversion

in a two-level system cannot be achieved. Inversion can only be achieved by

pumping with imcoherent heght, if there are more levels and subsequent relax-

ation processes into the upper laser level. Due to these relaxation processes,
the rate I', deviates from the equilibrium expression (10.65), and it has to be
replaced by the pump rate A. If the pump rate A exceeds I'., the mversion
corresponding to Eq. (10.69) becomes positive

AT,
A+

(10.74)

Wy

If we allow for artificial negative temperatures, we obtain with 7" < 0 for the
ratio of relaxation rates

F ]_ eq
e ST _ o (10.75)

Fa Tip

Thus the pumping of the two-level system drives the system away from thermal
equilibrium. Now, we have a correct description of an ensemble of atoms
in thermal equilibrium with 1ts environment, which 1s a much more realistic
description of media especially of typical laser media.
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10.5 Bloch equations

Thus, the total dynamics of the two-level system mmcluding the pumping and
dephasing processes from Eqs.(10.70) and (10.71) is given by

- . Q, |
d = —(E—J(Lﬂeg—w))iJﬂ? w, (10.76)
W = _“’;“’“ﬂmg_mff, (10.77)

1

These equations are called the Bloch equations (within the RWA). They de-
scribe the dynamics of a statistical ensemble of two-level atoms interacting

with a classical electric field. Together with Maxwell's equations, where the
polarization of the medium 1s related to the expectation value of the dipole
moment of the atomic ensemble, these result in the Maxwell-Bloch equations.
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10.6 Dielectric susceptibility and saturation

The Bloch equations are nonlinear. However, for moderate field strength £,
1.e., the magnmitude of the Rabi frequency 1s much smaller than the optical
frequency, |€2,| < w, the inversion does not change much within an optical
cycle of the field. We assume that the mversion w of the atom will only be
slowly changing and 1t adjusts 1tself to a steady-state value w,. For a constant
field strength E,, Eqs. (10.76) and (10.77) reach the steady-state values

i (M, 8)w,

- . E 10.78
2h1/Ty +j(w — wey) " (10.78)
we = - U;an - (10.79)
L+ 3 {'lfT2j2+(wfg—w}2 |Ey|

d,

We mtroduce the normalized lineshape function, which 1s 1n this case a Lorent-
zlan )
_ (ym)
(l/TQ)Q + (weg — ':"-’])E ?

and connect the square modulus of the field |E,|? to the intensity I of a
propagating plane wave, according to [ = %|ﬂu|2

(10.80)

J— urD
1+ fL(w)

¥

(10.81)

Thus the stationary mversion depends on the intensity of the mcident Light.
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Therefore, wqg 1s called the unsaturated mversion, w, the saturated mversion
and [, with

= M e, (10.82)

1s the saturation intensity. The expectation value of the dipole operator (10.22)
1s then given by

;o lleTQZF -

<d> = M,,d & +c.c. (10.83)

Multiplication with the number of atoms per unit volum;e, N, relates the dipole
moment of the atom to the macroscopic polarization P. As the electric field,

also the polarization can be written in terms of complex quantities

Pt) = %(Eﬂeiw* + E’,"je—iwt) (10.84)
= NM,d, et + ce. (10.85)

ar
Py =2NM.,d,. (10.86)

With the definition of the complex susceptibility
Py = eox(w)EE, (10.87)

and comparison with Eqgs. (10.86) and (10.78), we obtain for the linear sus-
ceptibility of the medium

r

\(w) = M, M+< o

egl . , 10.88
T heg 1/To + j(w — weg) ( )

21



which 1s a tensor. In the following we assume that the direction of the atom 1s
random, 1.e., the alignment of the atomic dipole moment, 11-}@7 and the electric
field 1s random. Therefore, we have to average over the angle enclosed between
the electric field of the wave and the atomic dipole moment, which results in

Mg M. Mega M7 Mega M M? 0

' i ' egy €g “egx ; 1 = 5
Mgy M cqx Mgy M gy ﬂ-fegyﬂ-fegz = 0 fm'egy 0 = §| 1feg| 1.
Meg- My, Mg My, Mg M., 0 0 M2,
(10.89)

0

How to arrive at this average over the orientation is also discussed in Appendix
A. Thus, for homogeneous and 1sotropic media the susceptibility tensor shrinks

to a scalar ) .\
, _+ I—* QJi / ws
X = g e 1T+ i — )

Real and mmaginary part of the susceptibility

X(w) = x'(w) + X" (w)
are then given by

B |;“L-feg|2_-'“\fru-'s'T§(wEg —w)

X'(w) = L(w),

3heq

P |M,,[>2Nw, Ty _,

(10.90)

(10.91)

(10.92)

(10.93)
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Figure 10.4: Real and imaginary part of the complex susceptibility for an inverted
medium wg > 0. The positive imaginary susceptibility indicates exponential growth
of an electromagnetic wave propagating in the medium.

If the mcident radiation 1s weak, 1.e.,

I
—Lw) < 1 (10.94)
I
we obtamm w, = wy. For optical transitions there 1s no thermal excitation of
the excited state and wg = —1. For an mverted system, wg > 0, the real and

imaginary parts of the susceptibility are shown mn Fig. 10.4.

The shape of the susceptibility computed quantum mechanically compares
well with the classical susceptibility (2.22) derived from the harmonic oscillator
model close to the transistion frequency w,, for a transition with reasonably
high @ = Thw,,. Note, the quantum mechanical susceptibility is identical to the

complex Lorentzian one encounters in the discussion of loss and gam There 13

an appreciable deviation, however, far away from resonance. Far off resonance,

the RWA should not be used.
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The physical meaning of the real and 1maginary part of the susceptibility
1s of course 1dentical to our earlier discussion. The propagation constant k of
a TEM-wave in such a medium is related to the susceptibility by

1 :
ke = wy/ poeo(1 4+ x(w)) = kg (1 + 51(@) . with kg =w\/peg (10.95)
for |y| << 1. Under this assumption we obtain
k= ko(1+ %} —|—jfcu%. (10.96)

The real part of the susceptibility contributes to the refractive index n =
1 +'/2. In the case of \" < 0, the imaginary part leads to an exponential

damping of the wave. For " > 0, amplification takes place. Amplification of
the wave 1s possible for wy > 0, 1.e., In an mverted medium.
The phase relaxation rate 1 / 15 of the dipole moment determines the width

of the absorption line or the bandwidth of the amphtfier. The amplification can
not occur forever, because the amplifier saturates, when the intensity reaches

the saturation intensity. This 1s a strong deviation from the linear susceptibility
we derived from the classical oscillator model. The reason for this saturation
1s twofold: First, the light can not extract more energy from the atoms than
stored 1n them, 1.e., energy conservation holds. Second, the mduced dipole
moment n a two-level atom 1s limited by the maximum wvalue of the matrix
element. In contrast, the induced dipole moment 1n a classical oscillator grows
proportionally to the applied field without Lmits.
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10.7 Rate equations and cross-sections

limit of fast dephasing, i.e., T, much shorter than dynamics we are
interested in

the magnitude of the dipole moment relaxes instantaneously into the steady
state and follows the slowly varying electric field envelope Ey(t), which evolves
on a much longer time scale. We obtain with the quasi-steady-state solution
for the dipole moment (10.78), which may now have a slow time dependence
due to the slowly varying field envelope Ey(t), for the time-dependent inversion
in the atomic system

- _w(t) —wo w(t) . _
w = T TlISL(w)I(t], (10.97)

where I(t) = |Eo(t)|? /(2Zp) is the intensity of the electromagnetic wave inter-
acting with the two-level atom. In this imit, the Bloch equations are replaced
by a simple rate equation for the population. We only take care of the counting
of population differences due to spontaneous and stimulated emissions.

The interaction of an atom with light at a given transition with the stream
of photons on resonance, 1.e., w = w,, 1s often described by the mass action
law. That 1s, the number of induced transitions from the excited to the ground
state, 1s proportional to the product of the number of atoms 1n the excited state
and the photon flux density I, = I/ ﬁwEi

—owly, = —%I. (10.08) 2°

w | induced —



This defines an interaction cross-section o that can be expressed in terms of
the saturation mmtensity as

huse
o = Tlf (10.99)
- %mﬁ*gg-a? (10.100)

To summarize the findings of the discussions in this chapter so far, we
found the most important spectroscopic quantities that characterize an atomic
transition, which are the lifetime of the excited state or often called upper-state
lifetime or longitudinal hifetime T3, the phase relaxation time or transverse
relaxation time 75 which is the inverse half-width at half maximum (HWHM)
of the line, and the interaction cross-section ¢ that only depends on the dipole

matrix element and the linewidth of the transition.

26



