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7.5 Self-focusing

transverse beam profile becomes instable

intensity-dependent refractive index
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I *phase fronts bend due to the induced
| lens ("Kerr lens”)
I *self-focusing of the beam
|
R. Y. Chiao, E. Garmire, and C. H. Townes, Phys. Rev. Lett. 13, 479
(1964).
H. A. Haus, Appl. Phys. Lett. 8, 128 (1966).
relevance:

 Kerr-lens mode-locked laser oscillators
« unwanted detrimental effect of "hot spots”



simple physical consideration in 2D:
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Snell’'s law — total internal reflection for 6 < 6., with cosfl,. =
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If a beam of diameter 2a propagates through the medium, 1t contains, because
of diffraction, rays with an angle

0 = (i) _ (7.47)
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The refractive index difference, for which all these rays are totally reflected
(1.e., trapped) then follows from #. = g, thus
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From this we obtain, independent of the beam diameter, a critical power of
the beam

TA2

P. = )
8nne

(7.49)



T2

S8nng

P. (7.49)

above this critical power, self-focusing exceeds diffraction.

Note the quadratic scaling with wavelength!

in 2D (1 longitudinal, 1 transversal dimension): spatial solitons occur.

in 3D (2 transversal dimensions):

catastrophic self-focusing occurs, that eventually is balanced by other

nonlinear effects, e.g.,

- saturation of the intensity-dependent refractive index

- self-defocusing due to plasma formation by multi-photon ionization
("filamentation”)

A. Couairon and A. Mysyrowicz, Phys. Reports 441, 47 (2007).

L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J.-P. Wolf, Rep. Prog.
Phys. 70, 1633 (2007).



Photograph of a self-guided filament induced in air by a high-power
infrared (800 nm) laser pulse [from http://www.teramobile.org]




Remote detection of biological aerosols. The tube in the center of the
picture is an open cloud chamber generating the bioaerosol simulant.
The laser beam is arriving from the left. [from http://www.teramobile.org] 6




High-voltage lightning: (left) without laser guiding, (right) with laser guiding.
[from http://www.teramobile.org]



In the paraxial approximation l.e., small-angle approximation

k, = \/kﬂ (k2 + k2) Nk—% (k2 +K;) . (7.50)

The dispersion relation within the paraxial approximation reads

w 12 gy
— =k — 5 (kZ +k;) =0. (7.51)
Taylor expansion around the carrier wave with carrier frequency and wave
number in z-direction (wy, kp), 1.e., w = wop+Aw and k = (Ak,, Ak, ks + Ak,),
vields
29 Ak - — (AR2+ AKZ) = 0. (7.52)
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For the envelope E(x,y, z,t) of a inearly polarized pulse propagating in posi-
tive z-direction

E(z,y.z,t) = / / / d* (Ak) E(Ak,, Ak,, Ak, )elAwt=ak) (7.53)

allowing for the nonlinear polarization (from Chapter 3), we obtain
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In cylindrical coordinates and with the ansatz
E ('T', = t) = Ly (TT Zy t) eXp {_.}{D ('}“7 <, t)}

we arrive at the following two equations
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If a stationary beam exists, for which self-focusing and diffraction exactly
balance each other during propagation, then 1t must hold % = % = 0, from
which in combination with Eq. (7.56) follows

do B
or

0.

L.e., this solution exhibits a plane phase front. Eq. (7.55) then simplifies to
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This equation was solved numerically [3, 4]. The stationary solution with the
lowest critical power yields
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This is of the same order of magnitude as the simple estimate of Eq. (7.49).
However, Eq. (7.57) permits to gain deeper insights into the process of self-
focusing. It can easily be shown by insertion into Eq. (7.57) that, if Ey(r) is
a solution of Eq. (7.57), then also the scaled function v2Ey(yr) is a solution.
All these solutions contain the same guided energy

/ V2 E2 (yr) -rd*rzf E2 () r'dr’

0 — O

P = n;ff‘\fgg/ﬂﬂ/ E? (r) rdr.

This scaling invariance is one of the few exact results of self-focusing theory,
which reveals that the beam 1s not stable mm 3D. This changes if only one

transverse dimension exists, the other dimension could be fixed, e.g., using a

waveguide, then it holds according to Eq. (7.54)
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Introducing the retarded time t' =t — z /v, it follows

OE(t, z) 1 02 B2
N M A A e —— sE — jkony |[E|" E. 7.60
RE I3t a2~ dkoma |E (7.60)
Again 1t 1s straightforward to show by msertion, that this equation, which 1s
called nonlinear Schrodinger equation, possesses solutions

E(t', z) = Eysech L} eIk (7.61)

if the following relations are fulfilled
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Skog (7.62)

For a given power density guided in y-direction, that 1s proportional to

| B@d =205,

there is now only one solution, because the different solutions of form 42 EZ (yz)
belong to different power densities. We will later discuss the properties of the
nonlimear Schrodinger equation in greater detail, here we already pomnt out
that the solutions (7.61) correspond to a spatial soliton.
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For powers far above the critical power for self-focusing, the beam with a
Gaussian input profile is focusing down within a distance z¢ This distance can
be estimated as follows employing a parabolic approximation. The parabolic
intensity distribution in the Gaussian beam, I(r) = Iyexp [—r?/w?2], induces
in the center of the beam a lens, which bends the phase fronts of the beam

2
AS(r) = kon (I(r) — Ip) 2z ~ —ku-n.gfﬂ%z
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This phase shift corresponds to the effect of a lens or a spherical focusing
mirror with radius i according to

2

Ap(r) = _‘ELDQR

As the beam is focusing within a distance z = zy = R, 1t thus follows
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With the critical power for self-focusing according to Eq. (7.58), we obtain

[P [P
zp = 0.52kow} ?‘-" ~b ? (7.64)

Numerical simulations yield

1
P
2 =0.71b ("/F _ 0.86) . (7.65)

As an example, we consider self-focusing in sapphire. At 800-nm wavelength,
sapphire has a lmear refractive index of about n = 1.8 and an ntensity-
dependent refractive index coefficient of nd = 3 x 107 em?/W. With this
we obtain from Eq. (7.58) a critical power for self-focusing of P, = 2.7 MW.
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7.6 Raman and Brillouin scattering

Stimulated Raman and Brillouin scattering is an important technique to
investigate oscillations in molecules and solids

They permit the oscillations’ identification and study, without them directly
coupling to the optical radiation.

stimulated Raman scattering occurring in glass fibers limits the applicable
minimum pulse duration in optical communication systems

Raman amplification can be used to realize broadband Raman amplifiers
for optical communications.

physical effect of Raman scattering:
light propagating though a sample with polarization fluctuations can be
scattered in arbitrary direction and shifted in frequency

If the polarization fluctuations originate from oscillations of a molecules or
optical or acoustic phonons in a solid, the process takes place via
absorption or emission of a phonon, leading to an Anti-Stokes or Stokes
shift of the photon



absorption or emission of a phonon, leading to an Anti-Stokes or Stokes
shift of the photon

was = wy, + {2 (766)

weg = Wp, — Q._. (767)

where wy, 1s the frequency of the mcident laser photon and €2 the frequency
of the phonon involved in the process. A very strongly excited oscillation
would contribute equally strongly to Stokes and Anti-Stokes processes. In
many cases, the molecule 1s in the vibrational ground state, thus no thermally
populated higher vibrational levels are available. In this case, the Anti-Stokes
process 1s not possible.

SERS signal Laser 10 X field enhancement in nanostructures
/ — surface-enhanced Raman scattering (SERS)
A. Campion and P. Kambhampati,
el el /el el /eI Chem. Soc. Rev. 27, 241 (1998)

SERS substrate

from www.semrock.com 15



For developing a model, we assume that the mtramolecular oscillation co-
ordinate () of the molecule leads to a modulation of the polarizability a at
optical frequencies. Then we obtain in linear response

O

50 9 (7.68)
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a contribution to the nonlinear polarization of the form
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Prp — NE.J%QE we need Q  (7.69)

where we assume, that the electric field itself couples in whatever form to
the imtramolecular oscillation, N 1s the density of molecules. Omne form of
this coupling results from the conservation of total energy, 1.e., the sum of
mechanical and electromagnetic energy. If the total energy is conserved, then
the force exerted on the oscillation must be equal to the negative change of
the stored electric energy due to the elongation of the oscillation

F6Q = -4 {%EEQ} =0 {%EQEQ (1+ a)} (7.70)
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with € = £4(1 + @). This leads to
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The oscillation amplitude then satisfies the equation

9%Q (t, z) dQ (t, z) 2 gy Owv

2
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We assume, e.g., that the electric field contains two waves at the laser frequency
and the Stokes frequency, 1.e.,

E(z,t) = EpelWit=he2) 4 peeilwst=Fsz) 4 ¢ ¢

Since the resonance frequency of the oscillation 2y 1s generally far below the
optical frequencies w; and wg, essentially only the difference-frequency terms

Wy — W le to the oscillati - - -
L — Ws couple to the osclllation intensity modulation by beat terms
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(7.73)
With this we obtain for the stationary oscillation
Q(z,1) = Q(z,1) + Q*(z,1) (7.74)
with
. seSaELES |
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Within the Lorentz approximation (i.e., neglecting the off-resonant term, com-

pare Eq. (2.29)). it follows
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For the equation describing the Stokes wave within the SVEA, we then arrive

according to Eq. (7.69) at
. | all other beat terms
OEs  jw,  Oa -

3 . Nag@ Ev ignored here (7.77)
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Raman gain is superposition of
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Figure 7.6: Measured Raman amplification gain of melted quartz at a pump wave-
length of 1 pm. The horizontal axis shows difference frequency between laser and

Stokes line.

R. H. Stolen, Proc. IEEE 68, 1232, (1980)
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