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Chapter 7: Third-order nonlinear effects

third-harmonic generation (THG) or frequency tripling
self-phase modulation (SPM)

due to the possible different permutations of the input fields:
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if no resonances in between the fundamental and third harmonic

7.1 Third-harmonic generation (THG)

THG possible in both centrosymmetric and non-centrosymmetric media,

also possible in solids and liquids

arguably the most interesting case: generation of UV and VUV in gases

PO (3w) = “4“ B (3w : w,w,w) E (w) E (w) E (w). (7.2)

in low-conversion limit (almost always in THG), similar to SHG:
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The conversion efficiency 1s given by
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For loosely focused Gaussian beams with a focal cross section (l—ﬁ and con-

focal parameter b > {, we can write

(7.5)
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With stronger focusing, the Rayleigh range, over which the beam is
focused, becomes smaller than the length of the conversion region
2mwy
A
effective interaction length ~ Rayleigh range, i.e., lefr ~ 2b
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phase-matched case: (7.6)

detailed calculation for case of strong focusing for third-order processes:
losr = 1.7b
G. C. Bjorklund, IEEE J. Quantum Electron. 11, 287 (1975)



in solids: in general difficult to achieve phase matching for THG
solution: SHG + subsequent SFG

In gases: by suitable mixing of different gases, the dispersion can be
compensated, thus achieving phase matching,
THG conversion efficiencies up to 10% achieved

D. M. Bloom, G. W. Bekkers, J. F. Young, and S. E. Harris, Appl. Phys.
Lett. 26, 687 (1975).

7.2 The nonlinear refractive index

SPM effects come along with an additional factor 3 compared to THG,
(due to number of possible permutations of input frequencies)
if only an electric field in x-direction:

PO () = Tﬂlgjgﬂ (w: w,w, —w)|E, {M)‘ E, (w) (7.8)
= g9 n’E, ~ g0 {nj + 2noAn} E,, (7.10)

n = ng + An. (7.11)
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linear polarization, definition via
P Lp s E 3 (3)

electric field: An=gnyp |Ee| = PaL = X (7.13)
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A plane wave with arbitrary polarization in the z-y-plane is propagating

In z-direction
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in an instantaneously reacting, 1sotropic and lossless medium with third-order
nonlinearity, thus it holds Xiz2x = Xazyy + Xayay + Xayye. Lhis gives rise to a
nonlinear polarization (see problem set 2)
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SPM XPM coherence term

description via circular polarizations
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1 2. 2.
lelzﬁ}(':"’]) — §Euhxm [ E:I:‘ E:I: + 2 ‘E:F‘ E:l::| . (7 19:]
2
Nac = g”ELw (7.20)

independent, if the definition is based on electric field or intensity

At first glimpse, 1t might be surprising that in the formulation i terms of
circularly polarized licht, see Eq. (7.19). no coherence term appears. How-
ever, this can be understood by the following argument: the difference phase
between both polarizations enters the coherence term. This difference phase
determines for equally strongly excited polarizations the orientation of the re-
sulting superposed linear polarization. However, for linear polarization only
self-phase modulation occurs and thus the polarization direction 1s conserved.
If Eq. (7.19) contained a coherence term, this would result in a polarization-
dependent polarization rotation, which, however, does not occur.




7.3 Molecular orientation and refractive index

A strong contribution to the nonlinear refractive index often stems from the
orientation of an anmisotropic molecule 1n an applied field. We therefore consider
an ensemble of molecules, each of them possessing a linear polarizability o) n
the direction of a distinguished axis of the molecule and a polarizability «
perpendicular to that axis.

7.3.1 The Lorenz-Lorentz law

The dielectric displacement 1s given by
D =5E+ P, (7.21)

where the polarization depends on the local field E;,.,; via the molecules’
density N and the average polarizability (o) according to

P = Enﬂ'r (&) E,ggmg. (722)



The local field depends on the applied external field E and the resulting po-
larization P itself. To find the relation between the local field and external
field and the polarization, we consider the microscopic spherical cavity inside
a polarized 1sotropic medium shown in Fig. 7.1. The charge density on the
surface of the sphere 1s given by —P cosf, and the field at the center of the
sphere due to this charge density 1s

T p2w
E. = ! (P cos 6) cos Aa® sin 8dOd o
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P. (7.23)

spherical cavity inside a
polarized isotropic medium
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The local field 1s the superposition of the external field and the field created
by the polarization, 1.e.,

1
E =E+—P. 7.24
local + 35‘1_-] ( )
Using Eq. (7.22) we can eliminate the local field and it follows for the relation
between the polarization and the externally applied field taking into account

screening effects of the medium

P 1
—E+—P
E[.f\'r (&} N 35@
or V(o)
N«
P = EUWE. (725)
3
The refractive index 1s defined via
P = ¢y(n? — 1)E, (7.26)

from which, by comparison with Eq. (7.25), we obtain the relation between
average polarizability and refractive index

Clausius-Mossottior ~ N{(a) nj—1
Lorenz-Lorentz: 3 ng+2

(7.27)

i -n.% + 2
local field enhanced: Eju = ( 5 ) E. (7.28)

9



7.3.2 Intensity-dependent refractive index

If the axis of the molecule encloses an angle # with the direction of the local
field, then the polarization in the direction of the electric field i1s given by

P=N [cx” <1t:,1::-5~2 9) + <sin2 9)} Eiocal
or according to Eq. (7.22)
(a)g = (o) — 1) <c052 )+ ay.
With
1 2r  pw
<msg H) = —/ / cos® f sin Odhdd =
A7 0 0
and Eq. (7.27), 1t then follows

2 T AT
=l N o N o,
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canonical ensemble of molecules (temperature T)
exposed to external electric field

, W
p(W) ~ exp [— —kBT]

L

(7.29)

(7.30)

(7.31)
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energy of dipole in electric field W = —1P-Ey.; = —1a(8) |Eipeal”

. 2 2

(a:” — &L) | Elocal|” cos® 6

A) ~ — .
p(6) ~ exp [ 2kpT

Thus the field also changes the polarizability of the medium by partial orien-
tation of the created dipoles. It holds
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From the Lorenz-Lorentz relation (7.27), 1t then follows

Aoy = Aler=0s) B’ _ 3 Groin
Y= 15 kT " Nm+2)?

From this equation and the Lorenz-Lorentz relation (7.28) finally follows

2 - 2
o ng + 2 N (o —ay) (7.32)
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7.4 Self-phase modulation (SPM)

assume a purely linearly polarized or circularly polarized beam,
— polarization is conserved

from Eq. (3.8) with t' =¢ — z/v; and Pyp = 2conAn(E)E

9Bty =~ 3% po ik AR(E) (G, (7.33)
0z angfu
ansatz E(z,t') = |E(z,t")| e 751 (7.34)
koAn(E) =6 |E(z,t)[
SPM coefficient § = kon; /2
IE(Z ) —J|E(z, f)I—O( t') = —jo |E(z, )|’
> E|E(;;:.,+:’)| — 0 |envelopel? in time domain does NOT change
d

50(z,t) = 5| E(z,t)],

o(z,t) = ¢(0,t') + 5§ |E(z,)|* . phase modified o instantaneous intensity

E(z,t) = e PECOP B 1), (7.36) 12



propagation direction --—

phase 1s only slowly varying in time.

(b)
instantaneous frequency
AL __Eii.;.-*}(t) -
Aw(t) = —— (7.37)
(c)
.ﬁ&h

— time

13



| nonlinear phase shift
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always two instants during the pulse, which
contribute to the same generated frequency

(€)

constructive/destructive interference
depending on relative phase at these times

— maxima/minima in SPM spectrum

A (D4

zero points in spectrum for ¢y = (2m + 1)«

number of minima N on one side of the spectrum: (2N +1) > — > (2N — 1)
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2
SPM for Gaussian pulse: () = Ipexp [—%]

t?

o(t) = ¢pexp [—El
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From the relations for the full width at half maximum (FWHM)

_ TFWHM
1.665

and the time-bandwidth product of a Gaussian pulse

0.44

TFWHM

Awrwoam = 2m,

we obtaln for the spectral broadening of a Gaussian pulse

Awas — Aws  1.71-1.665

AWFw HM 0.44 - 27

(7.41)

(7.42)

(7.43)

(7.44)
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7.5 Self-focusing

transverse beam profile becomes instable

intensity-dependent refractive index

|
I
|
I
I for An,>0:
e I *phase velocity in center reduced
I *phase fronts bend due to the induced
| lens ("Kerr lens”)
I *self-focusing of the beam
|
R. Y. Chiao, E. Garmire, and C. H. Townes, Phys. Rev. Lett. 13, 479
(1964).
H. A. Haus, Appl. Phys. Lett. 8, 128 (1966).
relevance:

*Kerr-lens mode-locked laser oscillators
-unwanted detrimental effect of "hot spots”
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simple physical consideration in 2D:
n

n+An
A y

Snell’'s law — total internal reflection for 6 < 6., with cosfl,. =

52 A
cosf 21— £ =1 = 6.~ \/2An/n. (7.46)

n

+.}.n

If a beam of diameter 2a propagates through the medium, 1t contains, because
of diffraction, rays with an angle

0 = (i) _ (7.47)

kqgn 2a

The refractive index difference, for which all these rays are totally reflected
(1.e., trapped) then follows from #. = g, thus

H'E
An, = ndl, = ? . (7.48)

From this we obtain, independent of the beam diameter, a critical power of
the beam

TA2

P. = )
8nne

(7.49)



T2

S8nng

P. (7.49)

above this critical power, self-focusing exceeds diffraction.

Note the quadratic scaling with wavelength!

in 2D (1 longitudinal, 1 transversal dimension): spatial solitons occur.

in 3D (2 transversal dimensions):

catastrophic self-focusing occurs, that eventually is balanced by other

nonlinear effects, e.g.,

- saturation of the intensity-dependent refractive index

- self-defocusing due to plasma formation by multi-photon ionization
("filamentation”)

A. Couairon and A. Mysyrowicz, Phys. Reports 441, 47 (2007).

L. Bergé, S. Skupin, R. Nuter, J. Kasparian, and J.-P. Wolf, Rep. Prog.
Phys. 70, 1633 (2007).
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In the paraxial approximation l.e., small-angle approximation

k, = \/kﬂ (k2 + k2) Nk—% (k2 +K;) . (7.50)

The dispersion relation within the paraxial approximation reads

w 12 gy
— =k — 5 (kZ +k;) =0. (7.51)
Taylor expansion around the carrier wave with carrier frequency and wave
number in z-direction (wy, kp), 1.e., w = wop+Aw and k = (Ak,, Ak, ks + Ak,),
vields
29 Ak - — (AR2+ AKZ) = 0. (7.52)
Ug Qk‘g

For the envelope E(x,y, z,t) of a inearly polarized pulse propagating in posi-
tive z-direction

E(z,y.z,t) = / / / d* (Ak) E(Ak,, Ak,, Ak, )elAwt=ak) (7.53)

allowing for the nonlinear polarization (from Chapter 3), we obtain

190E OE 7 _, .
- E = —jkiAnE. 7.54
Ug 3t+5‘z+2knvl Jrost (7:54)
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In cylindrical coordinates and with the ansatz
E ('T', = t) = Ly (TT Zy t) eXp {_.}{D ('}“7 <, t)}

we arrive at the following two equations

196 0¢ 1 [06]° 1 [®Ey 10E,] . _.
R
= self-focusing + diffraction
1 OFE, OF, 1 dop OFE, 1 2o 100 .
Lg ot o 0z } N ko Or Or * 2kq Eo Or? o ror| 0. (7.56)

If a stationary beam exists, for which self-focusing and diffraction exactly
balance each other during propagation, then 1t must hold % = % = 0, from
which in combination with Eq. (7.56) follows

do B
or

0.

L.e., this solution exhibits a plane phase front. Eq. (7.55) then simplifies to

Err2
—ny By =

32 s
1 [C} Eo ldED] | (7.57)

RE | o2 7 or
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This equation was solved numerically [3, 4]. The stationary solution with the
lowest critical power yields

=4 2 =4 2 2
p - (u;i%) EDC%A _ (q.?ﬁ?») )\I 1 }a (7.58)

2
Ty A nn; Tnnl nng

This is of the same order of magnitude as the simple estimate of Eq. (7.49).
However, Eq. (7.57) permits to gain deeper insights into the process of self-
focusing. It can easily be shown by insertion into Eq. (7.57) that, if Ey(r) is
a solution of Eq. (7.57), then also the scaled function v2Ey(yr) is a solution.
All these solutions contain the same guided energy

/ V2 E2 (yr) -rd*rzf E2 () r'dr’

0 — O

P = n;ff‘\fgg/ﬂﬂ/ E? (r) rdr.

This scaling invariance is one of the few exact results of self-focusing theory,
which reveals that the beam 1s not stable mm 3D. This changes if only one

transverse dimension exists, the other dimension could be fixed, e.g., using a

waveguide, then it holds according to Eq. (7.54)

1 0FE OF 1 dg 0 E 2
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Introducing the retarded time t' =t — z /v, it follows

OE(t, z) 1 02 B2
N M A A e —— sE — jkony |[E|" E. 7.60
RE I3t a2~ dkoma |E (7.60)
Again 1t 1s straightforward to show by msertion, that this equation, which 1s
called nonlinear Schrodinger equation, possesses solutions

E(t', z) = Eysech L} eIk (7.61)

if the following relations are fulfilled

1 1

k ——fL E k., = )
5 05 | l]| s Qk[}l'g

Skog (7.62)

For a given power density guided in y-direction, that 1s proportional to

| B@d =205,

there is now only one solution, because the different solutions of form 42 EZ (yz)
belong to different power densities. We will later discuss the properties of the
nonlimear Schrodinger equation in greater detail, here we already pomnt out
that the solutions (7.61) correspond to a spatial soliton.
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For powers far above the critical power for self-focusing, the beam with a
Gaussian input profile is focusing down within a distance z¢ This distance can
be estimated as follows employing a parabolic approximation. The parabolic
intensity distribution in the Gaussian beam, I(r) = Iyexp [—r?/w?2], induces
in the center of the beam a lens, which bends the phase fronts of the beam

2
AS(r) = kon (I(r) — Ip) 2z ~ —ku-n.gfﬂ%z
.rD

This phase shift corresponds to the effect of a lens or a spherical focusing
mirror with radius i according to

2

Ap(r) = _‘ELDQR

As the beam is focusing within a distance z = zy = R, 1t thus follows

2 2

Lgngfu zf = ;LDQZf

and therefore
wp

V2nlIy

(7.63)

Zf =
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With the critical power for self-focusing according to Eq. (7.58), we obtain

[P [P
zp = 0.52kow} ?‘-" ~b ? (7.64)

Numerical simulations yield

1
P
2 =0.71b ("/F _ 0.86) . (7.65)

As an example, we consider self-focusing in sapphire. At 800-nm wavelength,
sapphire has a lmear refractive index of about n = 1.8 and an ntensity-
dependent refractive index coefficient of nd = 3 x 107 em?/W. With this
we obtain from Eq. (7.58) a critical power for self-focusing of P, = 2.7 MW.
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