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9  Optical Parametric Amplifiers and Oscillators 

9.1  Optical parametric generation (OPG) 

9.2  Nonlinear optical susceptibilities 

9.3  Continuous-wave OPA 

9.4  Theory of optical parametric amplification 

9.5  Phase matching 

9.6  Quasi phase matching (QPM) 

9.7  Ultrashort-pulse parametric amplifiers (OPA) 

9.8  Optical parametric amplifier designs 

9.9  Ultrabroadband optical parametric amplifiers 
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9.10 Optical parametric chirped-pulse amplification (OPCPA)  

[5] Largely follows the review paper by G. Cerullo et al., “Ultrafast Optical 
Parametric Amplifiers,” Rev. Sci. Instrum. 74, 1-17 (2003) 
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9 Optical Parametric Amplifiers and Oscillators 

9.1 Optical Parametric Generation (OPG) 

energy conservation: 

momentum conservation: 

Degeneracy:    wi=ws=wp/2 

 

2 



pump 

signal and idler resonant 

Optical Parametric Oscillator (OPO) 

double resonant: 

single resonant: only signal resonant 

Advantage: Widely tunable, both signal and idler can be used! 

For OPO to operate, less gain is necessary in contrast to an OPA 
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Total field: pump, signal and idler: 

Nonlinear Optical Susceptibilities 

Drives polarization in medium: 

Polarization can be expanded in power series of the electric field: 

Defines susceptibility tensor: 

4 



Special Cases 
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9.2 Continuous-wave OPA 

Wave equation : 

Include linear and second-order terms: 

Changes group  
and phase  
velocities  
of waves 

Nonlinear  
interaction  
of waves 

Wave amplitudes 

z-propagation only: 
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Slowly varying amplitude approximation: 

Separate into three equations for each frequency component: 

Introduce phase mismatch: 

and effective nonlinearity and coupling coefficients: 
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Coupled wave equations: 
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Manley-Rowe relations: 

Intensity of waves: 

X 
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9.4 Theory of Optical Parametric Amplification 

Undepleted pump approximation: 

with: 

gain  max. gain, when phase matched  
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Maximum gain 

General solutions: 

Here: 

For large gain: 
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Figure of merit: 



Fig. 9.3 Parametric gain for an OPA at the pump wavelength lp = 0.8 mm and the 
signal wavelength ls = 1.2 mm, using type-I phase matching in BBO (deff   = 2 pm/V). 
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Fig. 9.4 Parametric gain for an OPA at the pump wavelength lp = 0.4 mm and the signal 
wavelength ls = 0.6 mm, using type-I phase matching in BBO (deff   = 2 pm/V). 
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9.4 Phase Matching 

Type I: noncritical 

Uniaxial crystal: ne < no 

Type I: critical 

Fig. 9.6 Type-I critical phase matching  
by adjusting the angle θ between wave  
vector of the propagating beam and the  
optical axis. 

Fig. 9.5 Type-I noncritical phase matching. 



15 

9.4 Phase Matching 

Critical Phase Matching 



Fig. 9.7  Angle tuning curves for a BBO OPA at the pump wavelength λp=0.8 μm for 
type-I phase matching (dotted line), type-II (os + ei → ep) phase matching (solid line), 
and type-II (es + oi → ep) phase matching (dashed line). 
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9.4 Phase Matching 
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Fig. 9.8  Angle tuning curves for a BBO OPA at the pump wavelength λp=0.4 μm for 
type-I phase matching (dotted line), type-II (os + ei → ep) phase matching (solid line), 
and type-II (es + oi → ep) phase matching (dashed line). 
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9.5 Quasi Phase Matching 

Fig.12.30: Variation of deff in a quasi phase matched material as a 
function of propagation distance. 
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9.6 Ultrashort-Pulse Optical Parametric Amplification   

Pulse envelopes 
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Temporal walkoff 
Group Velocity Mismatch (GVM) 

Pump pulse width 

Fig. 9.9: Pump-signal (δsp) and pump-idler (δip) group velocity mismatch curves for  
a BBO OPA at the pump wavelength λp=0.8 μm for type-I phase matching (solid line) and  
type-II (os + ei → ep) phase matching (dashed line). 

j=s,i 
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Fig. 9.10: Pump-signal (δsp) and pump-idler (δip) group velocity mismatch 
curves for a BBO OPA at the pump wavelength λp=0.4 μm for type-I phase matching 
(solid line) and type-II (os + ei → ep) phase matching (dashed line). 
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Fig. 9.11: Signal pulse evolution for a BBO type-I OPA with λp = 0.4 μm,  λs = 0.7 μm, 
for different lengths L of the nonlinear crystal. Pump intensity is 20 GW/cm2. Time 
is normalized to the pump pulse duration and the crystal length to the pump-signal 
pulse splitting length. [5] 
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Figure 9.12: Signal pulse evolution for a BBO type-I OPA with λp = 0.8 μm,  λs = 1.5 
μm, for different lengths L of the nonlinear crystal. Pump intensity is 20 GW/cm2. 
Time is normalized to the pump pulse duration and the crystal length to the pump-
signal pulse splitting length. [5] 
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OPA Bandwidth 

Bandwidth limitation due to GVM 

For signal-idler group velocity matching: 



Fig. 9.13: Phase matching bandwidth for a BBO OPA at the pump wavelength λp=0.8 μm for 
type-I phase matching (solid line) and type-II (os + ei → ep) phase matching (dashed line). 
Crystal length is 4 mm and pump intensity 50 GW/cm2. 



Fig. 9.14: Phase matching bandwidth for a BBO OPA at the pump wavelength λp=0.4 μm for 
type-I phase matching (solid line) and type-II (os + ei → ep) phase matching (dashed line). 
Crystal length is 2 mm and pump intensity 100 GW/cm2. 
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9.7 Optical Parametric Amplifier Designs 

Fig. 9.15: Scheme of an ultrafast optical parametric amplifier. SEED: seed generation stage; 
DL1, DL2: delay lines; OPA1, OPA2 parametric amplification stages; COMP:  compressor. 
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Near-IR OPA 

Fig. 9.16:  Scheme of a near-IR OPA. DL: delay lines; WL: white light generation stage; DF: 
dichroic filter.  [5]  
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9.8 Noncollinear Optical Parametric Amplifier (NOPA) 

Fig. 9.17: a) Schematic of a noncollinear interaction geometry; b) representation of signal 
and idler pulses in the case of collinear interaction; and c) same as b) for noncollinear 
interaction. 

Phase-matching condition: vector condition: 

p 

p 
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Variation on phase matching condition by 

X 

X 

and addition  

Only possible if: 

gs gi 
Correct 
index 



Fig. 9.18: Phase-matching curves for a noncollinear type-I BBO OPA pumped at λp=0.4 
μm, as function of the pump-signal angle a. [5] 



Fig. 9.19:  Scheme of a noncollinear visible OPA. BS: beam splitter; VA: variable 
attenuator; S: 1-mm-thick sapphire plate; DF: dichroic filter; M1 ,M2 , M3 , spherical 
mirrors. [5]   

NOPA Layout 



Fig. 9.20: a) Solid line: NOPA spectrum 
under optimum alignment conditions;  
dashed line: sequence of spectra obtained  
by increasing the white light chirp;  
b) points: measured group delay (GD) of 
the NOPA pulses; dashed line: GD after 
ten bounces on the ultrabroadband 
chirped mirrors. 
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Fig. 9.21:  Reconstructed temporal intensity of the compressed NOPA pulse measured 
by the SPIDER technique. The inset shows the corresponding pulse spectrum. [5] 
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9.9 Optical Parametric Chirped-Pulse Amplifier (OPCPA) 


