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Photograph of a self-guided filament induced in air by a high-power
infrared (800 nm) laser pulse [from http://www.teramobile.org]




Remote detection of biological aerosols. The tube in the center of the
picture is an open cloud chamber generating the bioaerosol simulant.
The laser beam is arriving from the left. [from http://www.teramobile.org] 3




High-voltage lightning: (left) without laser guiding, (right) with laser guiding.
[from http://www.teramobile.org]



7.6 Raman and Brillouin scattering

Stimulated Raman and Brillouin scattering is an important technique to
investigate oscillations in molecules and solids

They permit the oscillations’ identification and study, without them directly
coupling to the optical radiation.

stimulated Raman scattering occurring in glass fibers limits the applicable
minimum pulse duration in optical communication systems

Raman amplification can be used to realize broadband Raman amplifiers
for optical communications.

physical effect of Raman scattering:
light propagating though a sample with polarization fluctuations can be
scattered in arbitrary direction and shifted in frequency

If the polarization fluctuations originate from oscillations of a molecules or
optical or acoustic phonons in a solid, the process takes place via
absorption or emission of a phonon, leading to an Anti-Stokes or Stokes
shift of the photon



absorption or emission of a phonon, leading to an Anti-Stokes or Stokes
shift of the photon

was = wy, + {2 (766)

weg = Wp, — Q._. (767)

where wy, 1s the frequency of the mcident laser photon and €2 the frequency
of the phonon involved in the process. A very strongly excited oscillation
would contribute equally strongly to Stokes and Anti-Stokes processes. In
many cases, the molecule 1s in the vibrational ground state, thus no thermally
populated higher vibrational levels are available. In this case, the Anti-Stokes
process 1s not possible.

SERS signal Laser 10 X field enhancement in nanostructures
/ — surface-enhanced Raman scattering (SERS)
A. Campion and P. Kambhampati,
el el /el el /eI Chem. Soc. Rev. 27, 241 (1998)

SERS substrate

from www.semrock.com 6



For developing a model, we assume that the mtramolecular oscillation co-
ordinate () of the molecule leads to a modulation of the polarizability a at
optical frequencies. Then we obtain in linear response

O

50 9 (7.68)

a =)+ 7~
a contribution to the nonlinear polarization of the form

9
Prp — NE.J%QE we need Q  (7.69)

where we assume, that the electric field itself couples in whatever form to
the imtramolecular oscillation, N 1s the density of molecules. Omne form of
this coupling results from the conservation of total energy, 1.e., the sum of
mechanical and electromagnetic energy. If the total energy is conserved, then
the force exerted on the oscillation must be equal to the negative change of
the stored electric energy due to the elongation of the oscillation

F6Q = -4 {%EEQ} =0 {%EQEQ (1+ a)} (7.70)

—%gﬂEﬂaa.

with € = £4(1 + @). This leads to

1 gdcr
— oc E2
F qu C}Q' (7.71)



The oscillation amplitude then satisfies the equation

9%Q (t, z) dQ (t, z) 2 gy Owv

2
o2 +1 T or + QA (¢, 2) = 5 c}‘QE (z,t). (7.72)

We assume, e.g., that the electric field contains two waves at the laser frequency
and the Stokes frequency, 1.e.,

E(z,t) = EpelWit=he2) 4 peeilwst=Fsz) 4 ¢ ¢

Since the resonance frequency of the oscillation 2y 1s generally far below the
optical frequencies w; and wg, essentially only the difference-frequency terms

wp, — ws couple to the oscillation intensity modulation by beat terms
9%Q (t, 2) aq (t, z) 5 gp Oa i (wp—w .
. . -} — {{wr —ws)t—(kL—ks)z} f
52 +T g + 250 (t, 2) 9m 90 ‘e +c.c.
(7.73)
With this we obtain for the stationary oscillation
Q(z,1) = Q(z,1) + Q*(z,1) (7.74)
with
~ 250 o ELES _
Q(z2,t) = m 59 e Hlor—ws)—(hu—ks)z} (7.75)

Qg—(wL—wg) +31"( L—'-US) 8



Within the Lorentz approximation (i.e., neglecting the off-resonant term, com-

pare Eq. (2.29)). it follows

- S0 0a ) I
Qo) = g

¢ I (wr—ws)t— (ki —ks)z) (7.76)

- Qo — (wL —ws) +j5

For the equation describing the Stokes wave within the SVEA, we then arrive

according to Eq. (7.69) at
. | all other beat terms
OEs  jw,  Oa -

3 . Nag@ Ev ignored here (7.77)

or

(7.78)

wave
ne [
Is =/ —|Es| (7.79)
2 L0
follows
I5 () = Isoexp {glLl} (7.80)
with the Raman gain ?N(:i)e?irzig
2
2w, N g—g I2/4 1930)
g = 3 { 5 } ) (7.81) o
Qomengng I’ [wL — Wg — QD] + FE/EL
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Figure 7.6: Measured Raman amplification gain of melted quartz at a pump wave-

length of 1 pm. The horizontal axis shows difference frequency between laser and

Stokes line.

R. H. Stolen, Proc. IEEE 68, 1232, (1980)
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7.6.1 Focusing

For the total gain, we obtain
¢
G = f glpdz.
0

For a Gaussian beam, we then obtain, independent of focusing, the on-axis

gain (with intensity I, max(2) = ﬁ and b = mwg/A)
Twy 1+%2-

> mh T
Gy = / Gl maxdz=—=9P, = —gPL.
TW A

—oo

We again find that the effective Raman gain, which results from a y*)-effect,
in a volume 1s independent of focusing, as the effective mmteraction length 1s
proportional to the confocal parameter b.

In contrast, we obtain for the Raman gain in a glass fiber with core radius
ro and length ¢

_ 9

?T'T'%

Gy
Thus the waveguiding structure enhances the Raman gain by a factor

Gy LA
G, mr

12 "

1"



For a given situation, this ratio can easily amount to 10°, e.g., for £/ = 40 m,
ro =2 pm and A = 1 pm. In the real world, the effective fiber length 1s limited
by the absorption length 1/a for the pump light. This corresponds to several
kilometers, P;, = Ppgexp [—az]. For a long fiber (L > 1/a), we obtain

c; =20 (4/a).

T
For large gain, we can neglect the losses at the Stokes frequency. The light at
the Stokes frequency emerges from 1mitial noise, this 1s referred to as sponta-
neous scattering. A quantum treatment reveals that the power at the amplifier

output Driginating from spontaneous processes 1S equivalent to 1 Photon per

mode at the input of the amplifier.
The output power at the Stokes frequency originating from mput noise 1s
becoming comparable to the pump power at a gain of [§]

G = 16,
and the required pump power i1s then given by

Pro =16 (Aesr) (a/g) .

For a maximum Raman gain of ¢ = 0.1/m- (um?/A.;¢) - (P/W) from Fig.
7.6 and 0.2 dB damping, corresponding to an absorption length of 20 km, at
the communications wavelength 1.55 pm, and A, = 50 pm?, we obtain a

threshold power of Prg = 600 mW.




7.6.2 Strong conversion

For mnput powers far above threshold, 1t 1s possible to create several Stokes lines
as shown in Fig. 7.7. If the total power of the pump pulse (P) is transferred
to the first Stokes line (S7), then in the next fiber section a conversion to (.S2)

OCcurs, and so on.

output
power
A

13



7.6.3 Stimulated Brillouin scattering
Brillouin scattering: scattering of light on acoustic waves

Again as for Raman scattering, fluctuations of polarizations, but now
caused by acoustic waves, give rise to spontaneous and stimulated
scattering.

First observation of Stimulated Brillouin scattering (SBS):

R. Y. Chiao, C. H. Townes, and B. P. Stoicheff, Phys. Rev. Lett. 12, 592
(1964).

For strong pump fields: very efficient frequency conversion

14



In contrast

to Raman-active molecule oscillations or optical phonons, acoustic waves or
phonons propagate with a velocity v,, thus the wave number x and frequency
() of the acoustic wave are related by

K= (7.82)

In the scattering process, momentum and energy must be conserved

ks = kr — k. (7.83)
ws = wr, — . (7.84)
From the second condition follows
kg = S, — 150, (7.85)
nr, c

15



Since acoustic frequencies (kHz - 100 GHz) are much smaller than optical
frequencies (300 THz), it follows wg =~ w; and thus kg = :—ka ~ k. The
scattering geometry for SBS thus looks as depicted in Fig. 7.8. Furthermore,
the sound wvelocity 1s much smaller than that of light, v, < ¢, such that we
approximately have v,/c &~ 1075, The wavelength of the sound wave can thus
easily become of the same order of magnitude as that of light, therefore n
general arbitrary angles a are possible, 1.e.,

o, K AL

! :
Kk =2k 511’15 = sin— =

_ L 7.86
2~ 2%, 2An (7.86)

where Ay 1s the wavelength of light in the medium with refractive index n and
A the wavelength of the sound wave. This 1s the same condition as the Bragg
condition for scattering of X-rays from crystals. Again the longest interaction
length can be achieved m a guided collinear geometry of laser and Stokes
because from Eq. (7.86) and o = 0, 1t follows that Q2 = k = 0. However, 1t
1s possible in backscattering geometry, a = . it then holds

2
Thus the wavelength of light in combination with the phase velocity of the
sound wave and the refractive index of the material determine the frequency

A (7.87)

of the interacting sound wave via

Qp = 2Te. (7.88)
AL

16



For infrared light in glass with A\;, = 1.55 pum, n = 1.5, and v, = 5.96 km/s,
we obtain an SBS frequency of fp = Qp/27m = 11.5 GHz.
We now want to consider again the acousto-optical coupling. The ampli-
tude of elongation is Q (t, z) = Qe/*—"2) which satisfies
9?Q (z,1) oQ (t, z) sz( z) 1
— T = ~F(tz 7.89
2 + It Ya C}H P ( ) ( )
where p i1s the density of the medium and I' a damping constant. The light
field now couples to a wave and not to localized oscillations. In analogy to the
Raman effect, the driving force 1s given by

da
0Q"
However, we point out that here the polarizability 1s modulated by the stress

created m the medium which 1s only one consequence of the oscillation elon-
gation (). In general, a change in the refractive index ellipsoid resulting from

1
F(t,2) = 52 E? (7.90)

stress 1s described by the elasto-optical coefhcient p

3
A(1/n?)=pS = An= —%ps, (7.91)
or
Aa = A (g/g9) = 2nAn = —n'pS. (7.92)

17



The stress results from the elongation () according to

o
s=%__i. (7.93)
dz
such that 3
30 = jrn p. (7.94)

For slowly varying amplitudes (SVEA) and Q% = v2x?%, Eq. (7.89) for the
oscillation amphtude simplifies to
aQ T dQ  eokn

4
Sp #
Lo 0,2 ELE. 7.05
ot T 2@ Ty, = Tag, DeBs (7.95)

For the case of strong damping, e.g., in glass, a 50-GHz phonon only propagates
only 12 pm, in the stationary state, 9/0t = d/0z = 0, it follows

£0 H'H-jp

©= 2QpI

ELE%. (7.96)

The nonlinear polarization then is

da _ i
Py (ws) = EU%Q* - Ep = jregnypQ*EL. (7.97)

18



The backwards scattered Brillouin radiation then grows exponentially accord-
g to

OFEg Jwg K2nTplw.eg 9
— = Pynp = —— |\EL|” Es
0z 2cnggg 4coQpl
or a1
S
—— = —ql; 1
92 girls
with
STTEHEPQ B 4???15_1}2

- Negpual ANeppuaAvg’

where Avg = I'/27 is the FWHM bandwidth for Brillouin scattering. Due
to the narrower bandwidth Avg on the order of a few to 100 MHz, Brillomin
amplification 1s typically much stronger than Raman amplification. However,
only pump light within a bandwidth Avg contributes to Brillouin amplification
at a certain frequency. Therefore, by using pulses with durations below 1 ns,
whose sp D MHz, one can suppress Brillouin scat-
tering. For (e propeeetremr oS (or even shorter) pulses, Brillouin scattering
plays often no role. In contrast, when using narrowband lasers with linewidths
below 10 MHz, the threshold for strong Brillouin scattering 1s reduced to a few
mW. The threshold for Brillomin backscattering is ~20.

19



The backwards scattered Brillouin radiation then grows exponentially accord-

g to
O0Fg Jw,g k2nTp?w,eg 9
—— = Py = — |EL|” Es
0z 2cnggg 4coQpl
or a1
S
— = —qgl.1
92 girts
with 5 6 9 ‘5
S8Tenp dmnlp

9= A2cppu,l - NeopraAvg’

where Avg = I'/27 is the FWHM bandwidth for Brillouin scattering. Due
to the narrower bandwidth Avg on the order of a few to 100 MHz, Brillomin
amplification 1s typically much stronger than Raman amplification. However,
only pump light within a bandwidth Avg contributes to Brillouin amplification
at a certain frequency. Therefore, by using pulses with durations below 1 ns,
whose spectrum 1s narrower than 300 MHz, one can suppress Brillouin scat-
tering. For the propagation of ps (or even shorter) pulses, Brillouin scattering
plays often no role. In contrast, when using narrowband lasers with linewidths
below 10 MHz, the threshold for strong Brillouin scattering 1s reduced to a few
mW. The threshold for Brillomin backscattering is ~20.




8 Optical Solitons

E(Z,t) E(Z,t)ex
E(z,t) Re {E(w)ej(wt—kz)}
= |E|cos(wt — kz + ¢), (8.1)

where k(w) = wn(w)/cy, with n the refractive index of the medium. In general
the refractive index depends on frequency, and we want to understand the
propagation of a pulse with carrier frequency wy (see Fig. 8.1)

A

E(z,t) = Re { ! /0 N E(w)e“wfk(W)dw} . (8.2)
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Figure 8.1: Spectral density and dispersion relation for an optical pulse.



electric field
adojoAus pjaly

Figure 8.2: Decomposition of a pulse into carrier wave and envelope.

The electric field of the pulse in Eq. (8.2) can be decomposed into a car-
rier wave and an envelope A(z,t) and we normalize the wave such that its
magnitude square is the average intensity

27

n(wo)

E(z,t) = Re {A(z,t)ed@ot=Hwo))1 (8.3)

22



The envelope is then defined as

Az, t) = i/ A(Aw)ed Aet=AkA)2) A,

27T —wp—>—00
where
Aw = w— Wi,
Ak(Aw) = k(wo+ Aw) — k(wo),
- - 270
A(A = Fw= A
(Aw) = Bw =+ Aw)y [0,

as shown in Fig. 8.2.

8.1 Dispersion

k,// o k/// o
k(w) = k(wy) + k' |y Aw + 2| O Aw?* + 6| -

Aw? + O(Aw?h).

(8.4)

(8.7)

(8.8)

23
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A(z,t) = A0t — z/v,), (8.9)

where v, = 1/k’. Again, we introduce the retarded time, t' =t — z/v,, such
that

A(z,t) = A(0,1). (8.10)

When the spectrum becomes more broadband, then the second term in Eq.
(8.8) becomes important, which is the group-velocity dispersion (GVD), i.e.,
wave packets with different carrier frequency propagate with different speeds
(8.4). The envelope obeys the equation

DA(z,t) k' O?A(z,t)
9 ‘2 oz

(8.11)

aA (1) Z "’ (_ ,)HA(M/), (8.12)

n=2

25



8.2 Self-phase modulation

n = n(w, |A]?) = no(w) + ni| Al (8.13)
The envelope of the optical pulse then follows

0A(z,1)
0z

— jkomal Al )PA(=, 1) = —jO|A( DRA(5 ), (8.14)

26
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8.3 Nonlinear Schrodinger Equation (NLSE)

 DA(z,t) K oPA
175, T 2 o

— 0| A A. (8.15)

John Scott Russell
(1808-1882)
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8.3 Nonlinear Schrodinger Equation (NLSE)

(@) A phase
front back
k" < 0
>
time t
k" > 0
(b) A instantaneous
frequency
kll < O
>
time t
k" > 0
Figure 8.4: (a) Phase, (b) instantaneous frequency in a Gaussian pulse propagating 29

in a positive dispersive medium.



John Scott Russel

In 1834, while conducting experiments to
determine the most efficient design for
canal boats, John Scott Russell made a
remarkable scientific discovery. As he
described it in his "Report on Waves":

Report of the fourteenth meeting of the British Association for
the Advancement of Science, York, September 1844 (London
1845), pp 311-390, Plates XLVII-LVII).

30



Russell’s report

“| was observing the motion of a boat which was rapidly
drawn along a narrow channel by a pair of horses,
when the boat suddenly stopped - not so the mass of
water in the channel which it had put in motion; it
accumulated round the prow of the vessel in a state of
violent agitation, then suddenly leaving it behind, rolled
forward with great velocity, assuming the form of a
large solitary elevation, a rounded, smooth and well-
defined heap of water, which continued its course
along the channel apparently without change of form
or diminution of speed.”

31



Russell’s report

“| followed it on horseback, and overtook it still
rolling on at a rate of some eight or nine miles
an hour, preserving its original figure some thirty
feet long and a foot to a foot and a half in
height. Its height gradually diminished, and after
a chase of one or two miles | lost it in the
windings of the channel. Such, in the month of
August 1834, was my first chance interview with
that singular and beautiful phenomenon which |
have called the Wave of Translation.”
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Scott Russell Aqueduct

-—

= 1:13

89.3m long, 4.13m wide,1.52m deep, On the union Canal, Near
Heroit-Watt Univ.

33
www. spsu.edu/math/txu/research/presentations/soliton/talk.ppt




Scott Russell Aqueduct

www.spsu.edu/math/txu/research/presentations/soliton/talk.ppt
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A brief history (mainly for optical soliton)

1838 — observation of soliton in water

1895 — mathematical description of waves on
shallow water surfaces, i.e. KdV equation

1972 — optical solitons arising from NLSE

1980 — experimental demonstration

1990’s — soliton control techniques

2000’s —understanding soliton in the context of
supercontinuum generation

35



8.4 The Solitons of the NLSE

Without loss of generality, by normalization of the field amplitude A =

AL /222 the propagation distance z = 2’ - 72/Ds, and the time t = t' - 7, the
5

NLSE (8.15) reads
O0A(z,t)  0°A

=5, = op + 2| A]PA. (8.16)

8.4.1 The fundamental soliton

¢ |
Ags(z,t) = Agsech (—) e 7, (8.17)

T

where 6 is the nonlinear phase shift of the soliton

1
0 = §5A§z. (8.18)
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k,//
0 = u,z

272

(8.19)

Since the field amplitude A(z,t) is normalized, such that the absolute square

is the intensity, the soliton energy fluence is given by
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Figure 8.6: Fundamental soliton of the NLSE.

(8.20)
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Propagation of fundamental soliton

Propagation length =0 L

0.3

=
o

power [a.u.]

=
T

0.2

time [ps]

Input: 1ps soliton centered at 1.55 um; medium: single-mode fiber
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Important Relations

2|D,

2
T

OA; =

T ]

(Balance between dispersion and nonlinearity)

Nonlinear phase shift soliton acquires during propagation:

1 D
2 T2
Area Th - /2| D,
rea theorem — pylse Area = / As(z,t)|dt = mAeT = ;TV" —
o x 0
- 2 5 A2 4‘D2|
Soliton Energy: w = |As(z,1)|°dt = 2A57  Pulse width: 7 = "
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General fundamental soliton

Ag(z,t) = Agsech(z(z,t))e 0=, (8.23)

with .
r=—(t—|k"|poz — to), (8.24)
T

and the generalized phase shift

T

K| (1
0 = pol(t —to) + ‘2‘ (—2 —p3> 2+ 6. (8.25)

40



Ilmterns T +y

Higher-order Solitons: periodical evolution in
both the time and the frequency domain

2|D
A7r=N ‘52‘ ,N=123... u(0,7)=Nsech(r)

1.2 N=3

~ 08F

G. P. Agrawal, Nonlinear fiber optics (2001)
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Interaction between solitons (soliton collision)
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Figure 8.7: Soliton collision, both pulses recover completely.
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Interaction of two solitons at the same center frequency

Input to NLSE:

O=a/d, r=1

=1

O=x/2 r

G. P. Agrawal, Nonlinear fiber optics (2001)
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power [a.u. ]
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Gaussian pulse to 3-order soliton
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Evolution of a super-Gaussian pulse to soliton
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Rogue wave

Find more information from New York times:
http.//www.nytimes.com/2006/07/11/science/11wave.html




One more Rogue wave




Standard Solution of PDEs

F. T.
A(z=0,t) - A(z=0,w)

A(z=L,t) = A(z=L,w)
Inv. F. T.

Figure 8.9: Fourier Transform method for the solution
of linear time invariant PDEs.



3.3.4 Inverse Scattering Theory

Scattering Problem

A(z=0,t) B Scattering Amplitudes at z=0
I
T S Discrete + Continuous
| i Spectrum
| -
I
A(z=L,t) = Scattering Amplitudes at z=L
Inverse Scattering Soliton + Continuum

Figure 8.10: Schematic representation for the inverse scattering theory for
the solution of integrable nonlinear partial differential equations



Rectangular Shaped Initial Pulse and Continuum Generation
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Figure 8.11: Solution of the NSE for a rectangular shaped initial pulse
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